
Package: intamapInteractive (via r-universe)
August 26, 2024

Version 1.2-6

Date 2023-10-30

Title Interactive Add-on Functionality for 'intamap'

Maintainer Jon Skoien <jon.skoien@gmail.com>

Depends intamap

Imports spatstat.geom, automap, gstat, methods, sp, spcosa, sf

Description The methods in this package adds to the functionality of
the 'intamap' package, such as bias correction and network
optimization. Pebesma et al (2010) gives an overview of the
methods behind and possible usage
<doi:10.1016/j.cageo.2010.03.019>.

License GPL (>= 2)

NeedsCompilation no

Author Edzer Pebesma [aut], Jon Skoien [aut, cre], Olivier Baume
[ctb], A Chorti [ctb], Dionisis Hristopulos [ctb], Stepahnie
Melles [ctb], Giannis Spiliopoulos [ctb]

Date/Publication 2023-10-30 13:30:05 UTC

Repository https://jskoien.r-universe.dev

RemoteUrl https://github.com/cran/intamapInteractive

RemoteRef HEAD

RemoteSha e9283d7f3564854ac4b8303799ea3d4b121e22ce

Contents
intamapInteractive-package . 2
anisotropyChoice . 2
biasCorr . 4
calculateMukv . 6
doSegmentation . 7
findBiasUK . 9
findBoundaryLines . 10

1

https://doi.org/10.1016/j.cageo.2010.03.019

2 anisotropyChoice

findLocalBias . 11
findRegionalBias . 13
optimizeNetwork . 15
spCovAdd . 19
spCovDel . 20
ssaOptim . 21

Index 25

intamapInteractive-package

Interactive functionality added to the intamap package

Description

This package provides some added functionality to the link[intamap]{intamap-package} for
automatic interpolation of environmental variables. Whereas link[intamap]{intamap-package}
was specifically developed as a statistical back-end for a Web Processing Service (WPS), this pack-
age offers some functionality that is not possible to access through such a WPS.

The methods in this package can mainly be put into three groups:

bias correction methods for estimating and possible correct for biases between measurement net-
works, due to differences in measurement strategies, measurement devices, or (unknown)
post-processing of data

segmentation method for segmentation of data, based on their measurement density

network optimization methods for optimizing a measurement network (adding or removing ob-
servation points), based on different criteria

anisotropyChoice anisotropyChoice

Description

This function combines segmentation of scattered 2D data and estimation of anisotropy parameters
using the CTI method.

Usage

anisotropyChoice(object)

Arguments

object An Intamap type object containing one SpatialPointsDataFrame with observations.

anisotropyChoice 3

Details

The function AnisotropyChoice function employs the doSegmentation function to automatically
separate the original dataset into clusters based on the sampling density and the spatial locations
of the data (see doSegmentation for details). The results of the segmentation procedure and the
anisotropy analysis per cluster are returned in a matrix of dimension [cl]x5, where [cl] is the number
of clusters . Each row of the matrix contains the cluster index, the anisotropy ratio, the anisotropy
direction, the number of cluster points and the area inside the convex hull of the cluster. In addition,
a single set of anisotropy parameters is returned in the element anisPar. These parameters are
calculated using weighted averages of the covariance Hessian matrix estimates in each cluster. The
weights are based on the area enclosed by the convex hull of each cluster.

Value

object: A modified Intamap type object is returned, which contains the results of the anisotropy
parameter estimation. The anisotropy parameters are returned in the element anisPar as described
below.

anisPar List element in object that contains a list with the following elements:

ratio A coarse-grained anisotropy ratio for all the data
direction A coarse-grained anisotropy orientation for all the data
clusters A matrix of dimension [cl]x5 which determines the anisotropy per

cluster. Each row of clusters gives the (cluster id, anisotropy ratio, anisotropy
direction, number of points, area) for each cluster detected.

clusters list element added to the original object containing the segmentation results.

index Index array identifying the cluster in which each observation point be-
longs. Zero value means that the observations has been removed.

clusterNumber Number of clusters detected.

Note

This function uses the akima package to perform "bilinear" and "bicubic" interpolation for the
estimation of spatial derivatives

Author(s)

D.T. Hristopulos, G.Spiliopoulos, A.Chorti

References

[1] http://www.intamap.org

[2] A. Chorti and D. T. Hristopulos (2008). Non-parametric Identification of Anisotropic (Elliptic)
Correlations in Spatially Distributed Data Sets, IEEE Transactions on Signal Processing, 56(10),
4738-4751 (2008).

[3] D. T. Hristopulos, M. P. Petrakis, G. Spiliopoulos, A. Chorti (2009). Non-parametric estimation
of geometric anisotropy from environmental sensor network measurements, StatGIS 2009: Geoin-
formatics for Environmental Surveillance Proceedings (ed. G. Dubois).

4 biasCorr

Examples

library(gstat)
data(walker)
object=createIntamapObject(observations=walker)
object=anisotropyChoice(object)

print(summary(object$clusters$index))
print(object$anisPar)

biasCorr Bias correction

Description

Identifies and removes biases from measurement networks

Usage

biasCorr(object,regCode = "regCode",...)

Arguments

object Data frame with observations with same format as observations described in
the presentation of the intamap-package)

regCode the column name of regions in the data polygons, if existing

... further arguments to the bias correction methods called, see details below

Details

Many data sets can consist of data coming from a large number of different measurement networks,
using different measurement devices or applying different methods for post-processing the obser-
vations. Some of these networks can exist in the same area, e.g. when different authorities are
measuring the same, but at different locations (one of them in cities, the other one close to lakes),
some networks will only exist as neighbouring networks (networks operated by a municipality or a
country). Local networks can also be grouped together as one national data-base, which can again
be merged into an international data-base.

One challenge with the merging into data-bases is that there will be inconsistencies between mea-
surements in the different networks, which will again cause difficulties when attempting to map the
observations, as done in the intamap-package. The intention of this function is therefore to call
other functions that are able to identify and remove such differences, which can be referred to as
biases between the networks.

There are at the moment two methods available for bias correction, "UK" and "LM". "UK" is a
universal kriging based approach implemented in findBiasUK. This method can only deal with bi-
ases between neigbouring networks, but is well capable of taking covariates into account. "LM"
is based on local methods for estimating differences between networks, and is implemented in

biasCorr 5

findLocalBias and findRegionalBias. The choice between the methods is given by the param-
eter biasRemovalMethod in the parameter element of the object, set in getIntamapParams, called
from createIntamapObject.

The function will remove biases according to the settings of the parameters removeBias. Below is a
list of the functions available for bias corrections. See each individual function for more information
about usage.

findBiasUK The universal kriging based function for finding biases between neighbouring net-
works

findLocalBias Find biases for ovelapping networks

removeLocalBias Removes biases between ovelapping networks

findBoundaryLines Find points that define adjacent boundaries between regions

findRegionalBias Find biases for neighbouring networks

removeRegionalBias Remove biases between neighbouring networks

Value

Data frame with observations, with the identified biases removed.

Author(s)

Jon Olav Skoien

References

Skoien, J. O., O. P. Baume, E. J. Pebesma, and G. B. M. Heuvelink. 2010. Identifying and removing
heterogeneities between monitoring networks. Environmetrics 21(1), 66-84.

See Also

findLocalBias

Examples

data(meuse)
data(meuse.grid)
observations = data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc))
coordinates(observations) = ~x+y
gridded(meuse.grid) = ~x+y
pBoundaries = spsample(observations, 8, "regular",bb = bbox(observations) +

matrix(c(-400,-400,400,400),ncol=2),offset=c(0,0))
gridded(pBoundaries) = TRUE
cs = pBoundaries@grid@cellsize[1]/2
dx = cs/5

Srl = list()
nb = dim(coordinates(pBoundaries))[1]
for (i in 1:nb) {

pt1 = coordinates(pBoundaries)[i,]

6 calculateMukv

x1 = pt1[1]-cs
x2 = pt1[1]+cs
y1 = pt1[2]-cs
y2 = pt1[2]+cs

boun = data.frame(x=c(seq(x1,x2,dx),rep(x2,11),seq(x2,x1,-dx),rep(x1,11)),
y=c(rep(y1,11),seq(y1,y2,dx),rep(y2,11),seq(y2,y1,-dx)))

coordinates(boun) = ~x+y
boun = Polygon(boun)
Srl[[i]] = Polygons(list(boun),ID = as.character(i))

}
pBoundaries = SpatialPolygonsDataFrame(SpatialPolygons(Srl),

data = data.frame(ID=c(1:nb)))
observations$ID = over(observations, geometry(pBoundaries))
blines = findBoundaryLines(pBoundaries,regCode = "ID")

object = createIntamapObject(observations,meuse.grid,boundaryLines = blines,
params = list(removeBias = "regionalBias"))

object = biasCorr(object,regCode= "ID")
object$regionalBias$regionalBias
pBoundaries$bias = NA
pBoundaries$bias[object$regionalBias$regionalBias$ID] = object$regionalBias$regionalBias$ols
spplot(pBoundaries,"bias",sp.layout = list(list("sp.points",observations)))

calculateMukv MUKV computation

Description

Computes mean universal kriging variance (MUKV) for given geostatistical parameters

Usage

calculateMukv(observations, predGrid, model, formulaString, fun, ...)

Arguments

observations SpatialPoints or SpatialPointsDataFrame with observation locations and
possible covariates

predGrid Spatial object with coordinates of prediction locations (usually SpatialGrid
or SpatialGridDataFrame when independent covariate predictor variables are
used)

model Variogram model:object of class variogramModel, of the form created by vgm

formulaString formula that defines the dependent variable as a linear model of independent
variables; suppose the dependent variable has name z, for ordinary and sim-
ple kriging use the formula z~1; for universal kriging, suppose z is linearly

doSegmentation 7

dependent on x and y, use the formula z~x+y. The formulaString defaults to
"value~1" if value is a part of the data set. If not, the first column of the data
set is used.

fun alternative penalty function, needs to be a function which can take the same
arguments as calculateMukv

... other arguments to be passed on at lower level functions

Details

This function computes kriging on the predGrid with krige function, and averages the kriging
variance (MUKV). With covariates, the function takes a universal kriging model into account.

Value

MUKV value

Author(s)

S.J. Melles, O. Baume, J. Skoien

Examples

load data:
library(gstat)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
gridded(meuse.grid) = TRUE
meuse.grid$soil = factor(meuse.grid$soil)

estimate variogram:
smplvarUK = variogram(zinc~dist+ffreq+soil, meuse)
plot(smplvarUK)
vfitUK = fit.variogram(variogram(zinc~dist+ffreq+soil, meuse), vgm(1, "Exp", 300, 1))
plot(smplvarUK, vfitUK)

calculateMukv(meuse, meuse.grid, vfitUK, zinc~dist+ffreq+soil)

doSegmentation Spatial Segmentation - Clustering for Scattered Observations

Description

This function performs segmentation of scattered 2D data based on sampling density and location.

8 doSegmentation

Usage

doSegmentation(object)

Arguments

object An Intamap type object containing the element (list) observations, which in-
cludes the coordinates of the observation locations

Details

This function performs segmentation of scattered 2D data based on sampling density and location.
Let us assume that No is the number of observation locations. If No< 200, then a single cluster is
returned.

(1) The segmentation algorithm first removes isolated distant points, if there are any, from the
observation locations. Points (xi,yi) are characterized as ’isolated’ and ’distant’ if they satisfy the
following conditions : $abs(xi-mean(x)) > 4 *std(x) or abs(yi-mean(y)) > 4 *std(y)$ and distance
from closest neighbor $> sqrt((std(x)/2)^2+(std(y)/2)^2)$. After the first step the size of the original
dataset is reduced to N (N= No - isolated points) points.

(2) A sampling density matrix (lattice) consisting of N cells that cover the study area is constructed.
Each cell is assigned a density value equal to the number of observation points inside the cell. In
addition, each observation point is assigned the sampling density value of the containing cell.

(3) Unsupervised clustering edge detection is used to determine potential cluster perimeters.

(4) Each closed region’s perimeter is labeled with a different cluster (segment) number.

(5) All observation points internal to a cluster perimeter are assigned to the specific cluster.

(6) Each cluster that contains fewer than 50 observation points is rejected.

(7) The observation points that have not initially been assigned to a cluster and those belonging
to rejected (small) clusters are assigned at this stage. The assignment takes into account both the
distance of the points from the centroids of the accepted clusters as well as the mean sampling
density of the clusters.

Note: The No< 200 empirical constraint is used to avoid extreme situations in which the sampling
density is concentrated inside a few cells of the background lattice, thereby inhibiting the edge
detection algorithm.

Value

A modified Intamap object which additionally includes the list element clusters. This element
is a list that contains (i) the indices of removed points from observations; (ii) the indices of the
clusters to which the remaining observation points are assigned and (iii) the number of clusters
detected.

clusters list element added to the original object containing the segmentation results.

rmdist Indices of removed points.
index Index array identifying the cluster in which each observation point be-

longs.
clusterNumber Number of clusters detected.

findBiasUK 9

Author(s)

A. Chorti, Spiliopoulos Giannis, Hristopulos Dionisis

References

[1] D. T. Hristopulos, M. P. Petrakis, G. Spiliopoulos, A. Chorti (2009). Non-parametric estimation
of geometric anisotropy from environmental sensor network measurements, StatGIS 2009: Geoin-
formatics for Environmental Surveillance Proceedings (ed. G. Dubois).

Examples

library(gstat)

data(walker)
coordinates(walker)=~X+Y
object=createIntamapObject(observations=walker)
object=doSegmentation(object)

print(summary(object$clusters$index))

findBiasUK Finding the regional biases using GLM

Description

Method for identifying regional biases (in most cases biases between countries)

Usage

findBiasUK(object)

Arguments

object an object of class SpatialPointsDataFrame, at least containing observations
and a regional identification code (regCode)

Value

A data.frame with the biases for each country with uncertainty.

Author(s)

Olivier Baume

See Also

findRegionalBias

10 findBoundaryLines

findBoundaryLines Finding the regional boundaries

Description

Method for identifying points on the boundaries between regions (in most cases biases between
countries)

Usage

findBoundaryLines(polygons, projOrig, projNew, regCode = "regCode")

Arguments

polygons A SpatialPolygonsDataFrame with the polygons defining the boundaries of
each separate region.

projOrig The original projection of the boundaries

projNew If a different projection is wanted for the output

regCode the column name of regions in the data polygons

Details

This function finds the points defining the boundary between two polygons and passes a SpatialPointsDataFrame
with these points back. The result in mainly used by findRegionalBias for estimation of regional
biases. The function is based on the boundary between the polygons being defined by the same
points.

Value

A SpatialPointsDataFrame with points defining the boundaries between regions.

Author(s)

Jon Olav Skoien

References

Skoien, J. O., O. P. Baume, E. J. Pebesma, and G. B. M. Heuvelink. 2010. Identifying and removing
heterogeneities between monitoring networks. Environmetrics 21(1), 66-84.

Examples

data(meuse)
observations = data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc))
coordinates(observations) = ~x+y
pBoundaries = spsample(observations, 10, "regular", bb = bbox(observations) +

matrix(c(-400,-400,400,400),ncol=2),offset=c(0,0))
gridded(pBoundaries) = TRUE

findLocalBias 11

cs = pBoundaries@grid@cellsize[1]/2

Srl = list()
nb = dim(coordinates(pBoundaries))[1]
for (i in 1:nb) {

pt1 = coordinates(pBoundaries)[i,]
x1 = pt1[1]-cs
x2 = pt1[1]+cs
y1 = pt1[2]-cs
y2 = pt1[2]+cs

boun = data.frame(x=c(x1,x2,x2,x1,x1),y=c(y1,y1,y2,y2,y1))
coordinates(boun) = ~x+y
boun = Polygon(boun)
Srl[[i]] = Polygons(list(boun),ID = as.character(i))

}
pBoundaries = SpatialPolygonsDataFrame(SpatialPolygons(Srl),

data = data.frame(ID=c(1:nb)))
observations$ID = over(observations, geometry(pBoundaries))
blines = findBoundaryLines(pBoundaries, regCode = "ID")

findLocalBias Finds (and removes) biases between overlapping networks

Description

The function tries to identify differences between different networks of observation stations that
share a region. From these differences, biases are estimated, and can be removed.

Usage

findLocalBias(object, gid = "group",
formulaString = value ~ 1, regCode="regCode",...)

removeLocalBias(object, localBias, gid = "group", formulaString = value ~ 1,
regCode = "regCode")

Arguments

object data frame with observations

gid name of column identifying groups of local networks

formulaString formula that defines the dependent variable as a linear model of independent
variables; suppose the dependent variable has name z, for ordinary and simple
kriging use the formula z~1; for universal kriging, suppose z is linearly depen-
dent on x and y, use the formula z~x+y

regCode the column name of regions in the object, if existing

localBias List of data frames, for a single region, or for each of the regions, each contain-
ing biases for different networks in the region(s), result of findLocalBias

... arguments to be passed to sub-functions

12 findLocalBias

Details

findLocalBias tries to identify biases between overlapping networks, i.e. when there is no bound-
ary between different networks sampling the same type of data. This can typically happen if differ-
ent governmental bodies are responsible for different types of measurement, e.g. one measuring the
situation around populated areas, the other one measuring close to water bodies.

The function will then try to find the difference between the different networks, and estimate the
individual bias for each network, relative to a reference value, usually the average of all networks.
The method is not recommended if there can be assumed to be a dependency beteween the process
and the networks.

removeLocalBias removes the bias estimated in findLocalBias.

Value

From findLocalBias: A list consisting of one element for each regional network, or an element
single if only one regional network is apparent. Each of these elements is again a list consisting
of several other elements, where bias is the interesting one. The remaining elements are only
necessary for debugging purposes. The elements D, V and Q refers to the matrices with same
names in Skoien et al. (2009), i.e. the relationship matrix, the variance matrix and the difference
matrix.

From removeLocalBias: A SpatialPointsDataFrame with the biases subtracted.

Author(s)

Jon Olav Skoien

References

Skoien, J. O., O. P. Baume, E. J. Pebesma, and G. B. M. Heuvelink. 2010. Identifying and removing
heterogeneities between monitoring networks. Environmetrics 21(1), 66-84.

Examples

Assuming that the soil type is the source of biases
data(meuse)
coordinates(meuse) = ~x+y

lb = findLocalBias(meuse,gid = "soil",formulaString=as.formula(zinc~1))
lb$single$bias

meuseUnbias = removeLocalBias(meuse,localBias = lb, gid = "soil",
formulaString = zinc~1)

findRegionalBias 13

findRegionalBias Find and/or remove regional biases

Description

Method for identifying regional biases (in most cases biases between countries)

Usage

findRegionalBias(object,boundaryLines,
formulaString = value~1,
minKrige = 5, regCode = "regCode", unbias = "default")

removeRegionalBias(object, regionalBias, formulaString = value~1, regCode = "regCode")

Arguments

object an object of class SpatialPointsDataFrame, at least containing observations
and a regional identification code (regCode)

boundaryLines SpatialPointsDataFrame with points defining the boundaries between regions.
This can be found using findBoundaryLines.

formulaString formula that defines the dependent variable as a linear model of independent
variables; suppose the dependent variable has name z, for ordinary and simple
kriging use the formula z~1; for universal kriging, suppose z is linearly depen-
dent on x and y, use the formula z~x+y

minKrige Setting a minimum number of observations necessary for kriging

regCode the column name of regions in the data polygons, if existing

unbias defines if a particular data dependent function should be used to set unbiasedness
constraints for the biases. "default" gives one additional constraint, assuming
that the average of the biases should be equal to zero. See also details below.

regionalBias List of data frames, one for each region, each containing biases for different
networks in the region.

Details

This methods attempts to find biases between regional networks that are separated by a boundary,
based on line kriging along these boundaries. A typical example of such networks would be different
national networks, with the country borders as boundaryLines, but also other boundaries can be
considered. Further details can be found in Skoien et al. (2009).

The parameter unbias can be used to name the unbiasedness function if the user needs a different
unbiasedness constraint than the default one. Such a function (with unbias = "new" above) should
be similar to the following:

unBias.new = function(cDiff,uRegCode) {
D = cDiff$D
Q = cDiff$Q

14 findRegionalBias

V = cDiff$V
#

D = rbind(D,0)
cd = dim(D)[1]
ino = which(uRegCode == "NO")
iis = which(uRegCode == "IS")
iuk = which(uRegCode == "UK" | uRegCode == "GB")
if (length(iis) > 0) {
D[cd,ino] = .5
D[cd,iuk] = .5
D[cd,iis]= -1
Q[cd] = 0
V[cd] = max(V)
cd = cd+1
D = rbind(D,0)

}
cd = cd + 1
D = rbind(D,0)
D[cd,] = 1
Q[cd] = 0
V[cd] = min(V)
cDiff$D = D
cDiff$Q = Q
cDiff$V = V
return(cDiff)

}

The last part is similar to unbias.default. In the other part is solving the problem where there are no
boundaries between Iceland and any other countries. This would cause a missing constraint when
searching for the biases, which will make it impossible to find a solution. The solution here sets
the bias for Iceland equal to the average of the bias for Norway and United Kingdom. Note that the
real bias for Iceland is not really estimated in this case, this construction is mainly to make sure that
the system can be solved. If one were only interested in the bias, it would in this case be better to
remove Iceland from the data set, as a real bias is not possible to find.

Value

For findRegionalBias; a data.frame with the biases for each country with uncertainty.

For removeRegionalBias; a data.frame with observations, with biases removed

Author(s)

Jon Olav Skoien

References

Skoien, J. O., O. P. Baume, E. J. Pebesma, and G. B. M. Heuvelink. 2010. Identifying and removing
heterogeneities between monitoring networks. Environmetrics 21(1), 66-84.

optimizeNetwork 15

Examples

library(intamapInteractive)
data(meuse)
observations = data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc))
coordinates(observations) = ~x+y
pBoundaries = spsample(observations, 10, "regular",bb = bbox(observations) +

matrix(c(-400,-400,400,400),ncol=2),offset=c(0,0))
gridded(pBoundaries) = TRUE
cs = pBoundaries@grid@cellsize[1]/2

Srl = list()
nb = dim(coordinates(pBoundaries))[1]
for (i in 1:nb) {

pt1 = coordinates(pBoundaries)[i,]
x1 = pt1[1]-cs
x2 = pt1[1]+cs
y1 = pt1[2]-cs
y2 = pt1[2]+cs

boun = data.frame(x=c(x1,x2,x2,x1,x1),y=c(y1,y1,y2,y2,y1))
coordinates(boun) = ~x+y
boun = Polygon(boun)
Srl[[i]] = Polygons(list(boun),ID = as.character(i))

}
pBoundaries = SpatialPolygonsDataFrame(SpatialPolygons(Srl),

data = data.frame(ID=c(1:nb)))
observations$ID = over(observations, geometry(pBoundaries))
blines = findBoundaryLines(pBoundaries, regCode = "ID")
rb = findRegionalBias(observations, blines, value~1, regCode = "ID")
rb$regionalBias

obs2 = removeRegionalBias(observations, rb, value~1, regCode = "ID")

optimizeNetwork Optimization of networks

Description

Optimizes the sampling design of observation point locations using a varity of methods including
spatial coverage by k means (as described in spcosa) or by maximizing nearest neighbour dis-
tances and spatial simulated annealing (SSA, as described in ssaOptim) using MUKV as a criterion
(calculateMukv) .

Usage

optimizeNetwork(observations, predGrid, candidates, method, action,

16 optimizeNetwork

nDiff, model, criterion = "MUKV", plotOptim = TRUE, nGridCells,
nTry, nr_iterations = 10000, formulaString, fun, ...)

Arguments

observations object of class Spatial* with coordinates and possible covariates

predGrid object of class Spatial* used when method = "ssa". predGrid should contain
the coordinates of prediction locations for optimization. Usually predGrid is a
SpatialGrid / SpatialPixels or a SpatialGridDataFrame / SpatialPixelsDataFrame
when independent covariate predictor variables are used

candidates when method = "manual" or method = "ssa", candidates is the study area of
class SpatialPolygonsDataFrame; for other methods, when action = add, can-
didates are points or polygons of class Spatial*

method "spcov" for spatial coverage, "ssa" for spatial simulated annealing or "manual"
for manual processing of the network

action character string indicating which action to perform: "add" to add new measure-
ment stations to the existing network or "del" to delete existing stations

nDiff number of stations to add or delete

model variogram model to consider when method = "ssa" and criterion = "mukv";
object of class variogramModel, as generated by vgm

criterion Only in use for method "ssa": character string, "mukv"

plotOptim logical; if TRUE, creates a plot of the result as optimization progresses; TRUE
by default

nGridCells when method is "spcov" and action is "add": the approximate number gridcells
to explore within the candidate map as locations for new observations

nTry when method is "spcov" and action is "add": nTry is the number of initial
configurations to try. The method will keep the best solution in order to reduce
the risk of ending up with an unfavorable solution

nr_iterations number of iterations to process before stoping. The default coolingFactor in
ssaOptim is also a function of number of iterations. Refer to ssaOptim for
more details

formulaString When method = "ssa", this formula defines the dependent variable as a linear
model of independent variables; suppose the dependent variable has name z, for
ordinary and simple kriging use the formula z~1; for universal kriging, suppose
z is linearly dependent on x and y, use the formula z~x+y. The formulaString
defaults to "value~1" if value is a part of the data set. If not, the first column
of the data set in observations is used.

fun Alternative objective function for optimization, the input and output should
match the ones of (calculateMukv (except for fun)

... other arguments to be passed on to lower level functions

Details

This function contains different methods to optimally add or remove point locations to or from a
measurement network (Baume et al. 2011). Points can be added or deleted in the following ways:

optimizeNetwork 17

1. manually

2. using a spatial coverage approach by k means to add stations (as described in spcosa, Brus et
al. 2006) using a spatial coverage approach by maximizing mean nearest neighbour distances
to remove stations (as described in spCovDel)

3. or using spatial simulated annealing with mean universal kriging variance as a criterion (calculateMukv,
Brus & Heuvelink 2007, Melles et al. 2011)

The results of different methods can be checked using the function calculateMukv, which returns
mean universal kriging variance for an optimized network.

The user should be aware of the following limitations:

1. method = "ssa" is only implemented for criterion = "mukv"

2. Input candidates should preferably be a continuous domain such as SpatialPolygons

3. method = "ssa" with criterion = "mukv" makes it possible to assume a linear relationship
between independent variables in predGrid and dependent variables at observation locations
using universal kriging (krige). However, a correct estimate of mean universal kriging vari-
ance requires that the independent covariate variables be known at candidate locations. Thus
it is necessary to have complete spatial coverage for all covariate predictors in the linear model.
Covariate information must be available at both new candidate measurement locations and
prediction locations. This information is acquired (or sampled) from predGrid at candidate
locations during SSA using a call to over by default. But see ssaOptim for more details and
an option to interpolate these values for candidate locations from predGrid.

4. Note that it is not recommended to use independent variables which differ strongly in magni-
tude (as for traditional universal kriging)

5. If no formulaString is supplied, an ordinary kriging formula is assumed, and optimization
will proceed using mean ordinary kriging variance

Value

Object of class SpatialPoints* with spatial coordinates of optimized locations (including obser-
vation locations when action = "add")

Author(s)

O. Baume, S.J. Melles, J. Skoien

References

O. P. Baume, A. Gebhardt, C. Gebhardt, G. B. M. Heuvelink, J. Pilz (2011). Network optimization
algorithms and scenarios in the context of automatic mapping, Computers and Geosciences, 37:
289-294 (2011).

S. J. Melles, G. B. M. Heuvelink, C. J. W. Twenhofel, U. Stohlker (2011). Optimizing the spatial
pattern of networks for monitoring radioactive releases, Computers and Geosciences, 37: 280-288
(2011).

D. J. Brus, G. B. M. Heuvelink (2007). Optimization of sample patterns for universal kriging of
environmental variables, Geoderma, 138: 86-95 (2007).

18 optimizeNetwork

D. J. Brus, J. de Gruijter, J. van Groenigen (2006). Designing spatial coverage samples using the
k-means clustering algorithm. In A. McBratney M. Voltz and P. Lagacherie, editor, Digital Soil
Mapping: An Introductory Perspective, Developments in Soil Science, vol. 3., Elsevier, Amster-
dam.

See Also

ssaOptim, spCovDel, spCovAdd, calculateMukv, stratify

Examples

load data:
library(gstat)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
gridded(meuse.grid) = TRUE
predGrid = meuse.grid

estimate variograms (OK/UK):
vfitOK = fit.variogram(variogram(zinc~1, meuse), vgm(1, "Exp", 300, 1))
vfitUK = fit.variogram(variogram(zinc~x+y, meuse), vgm(1, "Exp", 300, 1))
vfitRK = fit.variogram(variogram(zinc~dist+ffreq+soil, meuse), vgm(1, "Exp", 300, 1))

study area of interest:
bb = bbox(predGrid)
boun = SpatialPoints(data.frame(x=c(bb[1,1],bb[1,2],bb[1,2],bb[1,1],bb[1,1]),

y=c(bb[2,1],bb[2,1],bb[2,2],bb[2,2],bb[2,1])))
Srl = Polygons(list(Polygon(boun)),ID = as.character(1))
candidates = SpatialPolygonsDataFrame(SpatialPolygons(list(Srl)),

data = data.frame(ID=1))

add 20 more points assuming OK model (SSA method):
optimOK <- optimizeNetwork(meuse, meuse.grid, candidates = candidates,
method= "ssa", action= "add", nDiff = 20, model = vfitOK, criterion="MUKV",
nr_iterations=10000, nmax=40)

add 20 more points assuming UK model (SSA method):
optimUK <- optimizeNetwork(meuse, meuse.grid, candidates = candidates,

method = "ssa", action = "add", nDiff = 20, model=vfitUK, criterion="MUKV",
nr_iterations = 10000, nmax = 40, formulaString = zinc~x+y)

add 20 more points with auxiliary variables (SSA method):
optimRK <- optimizeNetwork(meuse, meuse.grid, candidates=candidates,

method="ssa", action="add", nDiff=4, model=vfitRK, criterion="MUKV",
nr_iterations=10000, formula=zinc~dist+ffreq+soil, nmax=200)

add optimally 20 stations from current network with method "spcov"
(spatial coverage method)

spCovAdd 19

optimSC = optimizeNetwork(meuse, meuse.grid, candidates, method = "spcov",
action = "add", nDiff = 10, model = model, criterion = "MUKV", plotOptim = TRUE,
nGridCells = 10000,nTry = 100)

delete optimally 10 stations from current network with method "manual"
if (interactive()) optimMAN = optimizeNetwork(meuse, meuse.grid, candidates, method = "manual",

action = "del", nDiff = 10, model = model, criterion = "MUKV", plotOptim = TRUE)

comparison of results with ordinary kriging variogram, otherwise add formulaString
ssa method, assuming ordinary kriging
calculateMukv(optimOK, predGrid, vfitOK)

ssa method, using spatial location as covariates
calculateMukv(optimUK, predGrid, vfitUK, zinc~x+y)

ssa method, using other variables as covariates
calculateMukv(optimRK, predGrid, vfitRK, zinc~dist+ffreq+soil)

spcov method
calculateMukv(optimSC, predGrid, vfitOK)

10 stations manually deleted
if (interactive()) calculateMukv(optimMAN, predGrid, vfitOK, zinc~1)

spCovAdd Spatial coverage method to add new measurements

Description

This function spCovAdd allows to build optimization scenarios based on spatial coverage method.

Usage

spCovAdd(observations, candidates, nDiff, nGridCells, plotOptim = TRUE, nTry, ...)

Arguments

observations object of class data.frame with x,y coordinates
candidates a SpatialPolygonsDataFrame to explore: in use when optimizing the imple-

mentation of new measurement stations to an existing network
nDiff number of stations to add or delete
nGridCells number of grid cells to work on spatial coverage strafication
plotOptim logical; to plot the result or not
nTry the method will try nTry initial configurations and will keep the best solution in

order to reduce the risk of ending up with an unfavorable solution
... other arguments to be passed on at lower level functions such as stratify

20 spCovDel

Details

This function allows to build optimization scenarios based on spatial coverage method. The scenario
action is "add". To add new measurement locations to the running network, the function uses
function stratify from package spcosa. Function stratify adds new strata to the domain study.

Value

data.frame of optimized locations

Author(s)

Olivier Baume

References

D. J. Brus, J. de Gruijter, J. van Groenigen (2006). Designing spatial coverage samples using the
k-means clustering algorithm. In A. McBratney M. Voltz and P. Lagacherie, editor, Digital Soil
Mapping: An Introductory Perspective, Developments in Soil Science, vol. 3., Elsevier, Amster-
dam.

spCovDel Optimize the network with spatial coverage methods

Description

The function spCovDel allows to build optimization scenarios based on spatial coverage method.

Usage

spCovDel(observations, candidates, nDiff, plotOptim = TRUE, ...)

Arguments

observations object of class data.frame with x,y coordinates

candidates not compulsory used only for plotting purpose – a SpatialPolygonsDataFrame
describing the study area

nDiff number of stations to add or delete

plotOptim logical; to plot the result or not

... other arguments to be passed on at lower level functions such as nndist

Details

This function allows to build optimization scenarios based on spatial coverage method. When action
is "del", the function maximizes the mean distance of measurements with direct neighbours using
function nndist. The heuristic search uses a swapping algorithm to converge more rapidly to the
best solution.

ssaOptim 21

Value

data.frame of optimized locations

Author(s)

Olivier Baume

ssaOptim Spatial simulated annealing (SSA) for optimization of sampling de-
signs using a geostatistical measure of spatial prediction error

Description

Spatial simulated annealing uses slight perturbations of previous sampling designs and a random
search technique to solve spatial optimization problems. Candidate measurement locations are itera-
tively moved around and optimized by minimizing the mean universal kriging variance (calculateMukv).
The approach relies on a known, pre-specified model for underlying spatial variation (variogramModel).

Usage

ssaOptim(observations, predGrid, candidates, action, nDiff, model,
nr_iterations, plotOptim = TRUE, formulaString = NULL,
coolingFactor = nr_iterations/10, covariates = "over", fun, ...)

Arguments

observations object of class Spatial with coordinates and possible covariates

predGrid object of class Spatial* used when method = "ssa". predGrid should contain
the coordinates of prediction locations for optimization. Usually predGrid is a
SpatialGrid / SpatialPixels or a SpatialGridDataFrame / SpatialPixelsDataFrame
when independent covariate predictor variables are used

candidates candidates is the study area of class SpatialPolygonsDataFrame

action character string indicating which type of action to perform: "add" to add new
measurement stations to the existing network or "del" to delete existing stations

nDiff number of stations to add or delete

model variogram model:object of class variogramModel, as generated by vgm

nr_iterations number of iterations to process before stopping. The default coolingFactor is
also a function of number of iterations.

plotOptim logical; if TRUE, creates a plot of the result as optimization progresses; TRUE
by default

22 ssaOptim

formulaString formula that defines the dependent variable as a linear model of independent
variables; suppose the dependent variable has name z, for ordinary and sim-
ple kriging use the formula z~1; for universal kriging, suppose z is linearly
dependent on x and y, use the formula z~x+y. The formulaString defaults to
"value~1" if value is a part of the data set. If not, the first column of the data
set is used.

coolingFactor variable defining how fast the algorithm will cool down. With SSA, worsening
designs are accepted with a decreasing probability (generally set to p $<$ 0.2 to
avoid selection of local minima). The coolingFactor dictates the rate at which
p decreases to zero. Commonly p is set to exponentially decrease or cool as a
function of number of iterations to ensure convergence (Brus & Heuvelink 2007,
Melles et al. 2011). Smaller numbers give quicker cooling; higher numbers give
slower cooling.

covariates character string defining whether possible covariates should be found by "over"
or "krige", see also details below

fun Alternative objective function for optimization, the input and output should
match the ones of (calculateMukv (except for fun)

... other arguments to be passed on to lower level functions

Details

The default version of this function applies spatial simulated annealing for optimization with the
MUKV criterion (calculateMukv). With covariates, the function takes a universal kriging model
into account. When optimizing a sampling design using SSA and criterion = "mukv", measure-
ment values at new sampling locations are not required in order to calculate prediction error variance
(criterion = "mukv"). This attractive property allows one to estimate the kriging prediction error
variance prior to collecting the data (i.e., the dependent variable is unknown at new candidate loca-
tions), and it is this property that is used in the SSA optimization procedure after (Brus & Heuvelink
2007, Melles et al. 2011).

A stopping criterion countMax is implemented in lower level functions to end the optimization pro-
cedure after 200 search steps have occurred without an improvement in the design. If this stopping
criterion is reached before nr_iterations, SSA will terminate.

method = "ssa" with criterion = "mukv" makes it possible to assume a linear relationship be-
tween independent variables in predGrid and dependent variables at observation locations using
universal kriging (krige). However, a correct estimate of mean universal kriging variance requires
that the independent covariate variables be known at candidate locations. Thus it is necessary to
have complete spatial coverage for all covariate predictors in the linear model. Covariate informa-
tion must be available at both new candidate measurement locations and prediction locations. This
is not possible (except for the measurement locations themselves). Instead, these are estimated from
the prediction locations.

There are two possible methods to attain information on covariates at the candidate locations, and
the method can be set using the argument covariates: over and krige. over finds the value of
covariates at new locations by overlaying candidate locations on the prediction grid and taking the
value of the nearest neighbour. The second method uses kriging to estimate covariate values at new
locations from predGrid. The first method is generally faster, the second method is most likely
more exact, particularly if the resolution of predGrid is low in relation to the spatial correlation

ssaOptim 23

lengths of the covariates. Both methods are approximations that may influence the criterion used
for optimization with increasing numbers of points added.

It is possible to submit an alternative function fun as objective function. This function should take
at least the observation locations and the predGrid as input, and return a value which should be
minimized. See also calculateMukv for more information about arguments to this function.

Value

SpatialPointsDataFrame with optimized locations

Author(s)

O. Baume, S.J. Melles, J. Skoien

References

D. J. Brus, G. B. M. Heuvelink (2007). Optimization of sample patterns for universal kriging of
environmental variables, Geoderma, 138: 86-95 (2007).

S. J. Melles, G. B. M. Heuvelink, C. J. W. Twenhofel, U. Stohlker (2011). Optimizing the spatial
pattern of networks for monitoring radioactive releases, Computers and Geosciences, 37: 280-288
(2011).

Examples

load data:
library(gstat)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
gridded(meuse.grid) = TRUE
predGrid = meuse.grid

estimate variograms (OK/UK):
vfitOK = fit.variogram(variogram(zinc~1, meuse), vgm(1, "Exp", 300, 1))
vfitUK = fit.variogram(variogram(zinc~x+y, meuse), vgm(1, "Exp", 300, 1))
vfitRK = fit.variogram(variogram(zinc~dist+ffreq+soil, meuse), vgm(1, "Exp", 300, 1))

study area of interest:
bb = bbox(predGrid)
boun = SpatialPoints(data.frame(x=c(bb[1,1],bb[1,2],bb[1,2],bb[1,1],bb[1,1]),

y=c(bb[2,1],bb[2,1],bb[2,2],bb[2,2],bb[2,1])))
Srl = Polygons(list(Polygon(boun)),ID = as.character(1))
candidates = SpatialPolygonsDataFrame(SpatialPolygons(list(Srl)),

data = data.frame(ID=1))

add 20 more points assuming OK model (SSA method):
optimOK <- ssaOptim(meuse, meuse.grid, candidates = candidates, covariates = "over",

nDiff = 20, action = "add", model = vfitOK, nr_iterations = 10000,
formulaString = zinc~1, nmax = 40, countMax = 200)

24 ssaOptim

add 20 more points assuming UK model (SSA method):
optimUK <- ssaOptim(meuse, meuse.grid, candidates = candidates, covariates = "over",

nDiff = 20, action = "add", model = vfitUK, nr_iterations = 10000,
formulaString = zinc~x+y, nmax = 40, countMax = 200)

add 20 more points with auxiliary variables (SSA method):
optimRK <- ssaOptim(meuse, meuse.grid, candidates = candidates, covariates = "over",

nDiff = 20, action = "add", model = vfitRK, nr_iterations = 10000,
formulaString = zinc~dist+ffreq+soil, nmax = 40, countMax = 200)

Index

∗ cluster
anisotropyChoice, 2

∗ htest
anisotropyChoice, 2

∗ nonparametric
anisotropyChoice, 2

∗ spatial
anisotropyChoice, 2
biasCorr, 4
calculateMukv, 6
doSegmentation, 7
findBiasUK, 9
findBoundaryLines, 10
findLocalBias, 11
findRegionalBias, 13
intamapInteractive-package, 2
optimizeNetwork, 15
spCovAdd, 19
spCovDel, 20
ssaOptim, 21

anisotropyChoice, 2

biasCorr, 4

calculateMukv, 6, 15–18, 21–23

data.frame, 9, 14, 19–21
doSegmentation, 3, 7

findBiasUK, 4, 5, 9
findBoundaryLines, 5, 10, 13
findLocalBias, 5, 11
findRegionalBias, 5, 9, 10, 13

getIntamapParams, 5

intamapInteractive-package, 2

krige, 7, 17, 22

nndist, 20

optimizeNetwork, 15
over, 17, 22

removeLocalBias, 5
removeLocalBias (findLocalBias), 11
removeRegionalBias, 5
removeRegionalBias (findRegionalBias),

13

Spatial, 6, 16, 21
SpatialGrid, 6, 16, 21
SpatialGridDataFrame, 6, 16, 21
SpatialPixels, 16, 21
SpatialPixelsDataFrame, 16, 21
SpatialPoints, 6, 17
SpatialPointsDataFrame, 2, 6, 9, 10, 12, 13
SpatialPolygons, 17
SpatialPolygonsDataFrame, 10, 16, 19–21
spcosa, 15, 17
spCovAdd, 18, 19
spCovDel, 17, 18, 20
ssaOptim, 15–18, 21
stratify, 18–20

vgm, 6, 16, 21

25

	intamapInteractive-package
	anisotropyChoice
	biasCorr
	calculateMukv
	doSegmentation
	findBiasUK
	findBoundaryLines
	findLocalBias
	findRegionalBias
	optimizeNetwork
	spCovAdd
	spCovDel
	ssaOptim
	Index

